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Abstract 

Bovine motor disorders can be difficult to diagnose and usually require human involvement. 

Artificial intelligence (AI) has introduced many tools in the field of computer vision (CV) 

that can help with this task, such as pose estimation models. Training such models requires 

substantial amounts of data. Given the harsh conditions of feedlots, gathering this data can 

prove to be challenging. To help with this issue, we propose a pipeline to generate this data 
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synthetically. In this study, we used a three-dimensional digital representation of walking 

cattle to generate the data, compared its effectiveness with that of real footage captured from 

the real world, and trained pose estimation networks with them. By testing these networks on 

test data and analyzing their results, we concluded that this method could compensate for the 

scarcity of behavioral information and enable researchers to amend the shortcomings of their 

data. Furthermore, we illustrate another application for synthetic data, by using it to simulate 

a real-world problem such as finding the optimal placement of recording cameras in a feedlot 

and calculating the best parameters that can be involved. 

Introduction 

Motor disorders including lameness are prominent health concerns in feedlot cattle that affect 

their welfare, productivity, and profitability1–3. Lameness has a significant prevalence, 

accounting for about 16% of health problems in beef cattle, adding to production costs4,5. On 

average, feedlots lose approximately $60 USD per animal due to lameness6, leading up to 

70% of revenue loss7. Also, the treatment costs imposed to feedlot owners by each case of 

lameness range from $122 to $1391 CAD2,8. If lameness diagnosis can be made earlier and 

more precise, its duration could be decreased with a significant increase in cattle health and 

reduction in costs. 

Lameness can be detected visually in animal movement. Hence, one of the primary methods 

for detecting lameness is using a scoring system to rate the degree of its severity. Feedlot 

personnel are trained to follow this procedure for scoring to detect lameness1. The problem 

with these rating methods is inconsistency in scoring since it requires the observer as the 

primary decision maker for scoring9. The degree of agreement between scorers will change 
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over time based on their training and experience10. Transitioning from manual methods to 

more intelligent and automatic approaches can solve the inconsistency problem. 

To detect lameness, the animal’s gait pattern should be analyzed. To increase consistency in 

analyzing gait patterns, we need a method to measure gait patterns. There are multiple 

general approaches to do so. The first approach is using sensors. Since the 1980s, studies 

have investigated the potential of integrating sensors and analyzing their data to11. These 

studies have focused on measuring ground reaction force12–14, automatic measurement of 

weight distribution15,16, recording footsteps in a gait pattern17, analyzing gait and/or activity 

using accelerometers18,19.  Such approaches provide an accurate way of detecting lameness 

early on, but the sensor technologies used need to be very cost-efficient as some are hard to 

set up and take up considerable space. 

A more modern approach is leveraging AI and CV to describe and analyze gait patterns. 

Several studies have already explored the potential of this approach. Applying classic 

methods of AI such as classification and regression algorithms to the integration of lameness 

scores and features of image recordings has shown to be effective in this task20. Currently, 

34.1% of the studies focusing on lameness detection apply video analysis and image 

processing in their methods21. 

The advancements of AI and the ever-growing field of deep learning have revolutionized 

computer vision22, creating tools such as object detection23, and semantic segmentation24. 

One other tool that can significantly contribute to the matter at hand is pose estimation. Pose 

estimation provides information regarding the location of body parts given an image or a 

video of a subject. Through this method, a variety of problems concerning cattle behavior can 

be studied. There have been several promising works in this field which is constantly 
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growing. Application of pose estimation extends from lameness detection25,26 to activity 

classification27 and weight estimation28. 

The first challenge in creating these models is that they require a substantial amount of data 

for training29. In comparison to studying rodents30, acquiring data from a feedlot is more 

challenging. Animals are hard to control, and the environmental conditions cannot be 

completely controlled, since the subjects are roaming outdoors, in a variety of lighting 

conditions and weather. Moreover, even placing cameras in a stable place is not completely 

feasible due to extreme winds. 

There are solutions to overcoming this limitation. Data augmentation31, transfer learning32, 

synthetic data generations using generative adversarial networks33, and federated learning34 

are methods that solve problems using deep learning without requiring an extensive data 

collection approach. With new advancements in hardware design and their widespread 

accessibility, we can practice another form of synthetic data generation. By utilizing 3D 

graphical models in 3D modeling software or game engines, we can create realistic footage 

that resembles real-world data to an acceptable degree and can be used to provide ground 

truth data for training not only pose estimation models, but models for detection, and 

tracking35,36. 

In this project, we have used backgrounds from one-camera recordings of cattle walking in a 

single lane as a reference to create a 3D synthetic model of cattle behavior. Then we 

multiplied this data in numbers by altering the models to create more data and used them to 

train a supervised Deep Learning model. Our hypothesis is that the Deep Learning model 

trained with synthetic data in combination with real data will have a better performance in 

detecting the cattle pose than the model trained only with limited real data. 
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Results 

To evaluate the effectiveness of using synthetic data generated from three-dimensional (3D) 

models in training neural networks for cattle pose estimation, we designed a scenario in 

which we generate a synthetic dataset to complement a dataset recorded from real-world 

settings. For evaluation, we tested the performance of models trained on these datasets 

separately and combined. In this section, we present the evaluation metrics and elaborate on 

them. 

Table 1 shows COCO average precision and COCO average recall calculated for each of 

these models. We have performed a 5-fold cross-validation training with 20% of data being 

withheld from the models in each training. The models are then tested on a test dataset that 

has not been present in its training and validation. These metrics are averaged across all the 

models' training. 

Real and synthetic models are close to each other in terms of average precision, with the 

synthetic model having slightly higher precision. This shows that the synthetic data is 

designed properly and encapsulates the features of real-world scenarios, which confirms that 

our experiment succeeded in targeting the required variety of data. Based on this, we can 

conclude that synthetic data can even replace real data in such scenarios. The combined 

model improves the precision of the real model while also increasing its recall. This means 

that by seeing the synthetically generated data after learning the foundations of real data, the 

model was able to generalize more in its predictions and make better detections. 

To further analyze these models, we can take a look at the performance of each keypoint. 

Figure 6a includes polar plots that show the average object keypoint similarity score of each 
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keypoint for all models. The model with a higher coverage of the surface of the polar plot has 

a higher performance in predicting keypoints. In upper keypoints including points on the 

back, face, and neck, we can see that the models perform very closely. The combined model 

has taken the best features of each model and covers the largest area. In lower keypoints, it is 

evident that detecting the R\_F\_Paw keypoint (Right front paw) has been challenging, 

especially for the real model. In this case, the combined model has tried to learn from 

synthetic data while keeping the bias with the real model. 

By taking a look at Figure 6b, the difference between models becomes more apparent. On 

average, the combined model has the least pixel distance between its predictions and ground 

truth. Also, in Figure 6c, we can see that the combined model has fewer outliers than the real 

model and is more consistent in its predictions than the synthetic model. Figure 6f, Figure 6g, 

and Figure 6h show the attention of each model in the form of a heat map, we can see that the 

synthetic model is complimentary to the real model, (performing not as well in back arcs and 

better in paws). The combined model takes features from both models to reach a satisfactory 

performance. This makes the combined model a good choice for our work. 

These results suggest that the process of generating synthetic data for training neural 

networks can be effective for the analysis of cattle movements. By using 3D models to 

generate synthetic data, we can quickly and cost-effectively generate large amounts of 

training data, which can improve the accuracy and efficiency of behavior analysis. However, 

synthetically generated data cannot entirely replace the use of real-world data in this matter. 

As shown before, the model reaches its best performance when it has seen real data to form 

its foundation and keeps a connection with real-world scenarios. 
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Discussion 

In an era characterized by automation and AI, industries that fail to leverage these 

technologies risk falling behind. The cattle industry is no exception. One of the primary 

applications of AI in this sector is the diagnosis of motor disorders, the importance of which 

we have discussed in this paper. However, challenges associated with data collection remain 

significant obstacles, which this work seeks to address. Data collection is a resource-

intensive and expensive process, and insufficient data prevents effective model training. 

Our work proposes an alternative solution to reduce data collection costs by generating a 

synthetic feedlot environment. We demonstrated that synthetic data enables the integration of 

variations—such as changes in weather conditions, backgrounds, and subject 

characteristics—in datasets much faster than natural data collection. Collecting natural data 

across different weather conditions can require months of waiting for the appropriate season, 

assuming data collection is even feasible during that time. We further showed that these 

synthetic datasets are of high quality, enabling few-shot learning37 with synthetic data, and 

can be utilized for the initial training of models. Moreover, we demonstrated that synthetic 

data can improve model performance and, more importantly, enable model generalization by 

simulating varying conditions and accounting for different environmental changes. 

We selected pose estimation as the platform for our initial experiments, as it is widely 

accepted in the behavioral studies literature as a method for automatically analyzing 

movement and behaviors38. The results of this research have the potential to advance the 

wider field of cattle behavioral studies. By overcoming limitations posed by scarce training 

data, deep learning models can be developed and utilized to analyze specific behavioral 
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patterns. For example, pose estimation models can be combined with statistical analyses to 

enable early diagnosis of lameness and other motor disorders in feedlot cattle, which could 

significantly improve animal welfare, increase productivity, and reduce economic losses. 

In addition to assisting with model training, these synthetic environments can significantly 

contribute to every step of solution development and simulation. When designing a 

product—specifically for monitoring applications—there are numerous variables to consider, 

such as the positioning, number, and quality of cameras. Subsequent rounds of stress testing 

are necessary to ensure that the collected data meet the quality requirements for the intended 

task. 

Moreover, there are many tasks to consider in feedlot monitoring with cameras beyond motor 

disorder diagnosis. Tasks such as weight estimation28 (to monitor growth), activity 

monitoring27,39–42, feeding behavior analysis43, and calving event prediction44 have all shown 

promise in automation but require extensive testing. With synthetic data, users can first 

determine the optimal settings for placing their data collection devices and, second, perform 

multiple rounds of stress testing synthetically. This approach is much more cost-effective 

than conducting tests in a natural environment and allows for the identification and 

correction of issues before deployment. 

In Figure 7, you can see an example of such a simulation. By recording a single action of a 

cow from multiple cameras in the 3D environment, and training models or performing 

analysis based on them, we can find suitable recording conditions in the real world and be 

confident that we will acquire satisfactory results. 
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In an example of the weight estimation research, it is expected for the model to have the 

highest efficiency given the top camera footage, as it aligns with data used in the literature28. 

Despite the promising results, there are still some limitations in the methodology of our 

work, which opens the door for future studies to address them. Firstly, we confined our 

testing to pose estimation due to its widespread acceptance in the literature. Future research 

should explore the quality of synthetic data—and the potential to replace or reduce the need 

for real data—in other applications of AI in the cattle industry, such as body segmentation45  

or tracking46. 

Secondly, and more importantly, although we have aimed to eliminate many overheads of 

data collection and related expenses, generating synthetic data still requires extensive 

knowledge of various computer graphics software and a solid understanding of cattle 

behavior and interactions. To address this, we have transformed our models into a user-

friendly toolbox and made them publicly available on GitHub. This resource is intended to 

assist individuals with minimal knowledge of computer graphics in utilizing our methods. 

For the second aspect, we plan to develop an environment with multiple subjects that can 

interact, incorporating the dynamics of their behaviors into our model in future work. 

To summarize, in this work, we recognized pose estimation models as potential AI diagnostic 

tools. We then showed that utilizing 3D modeling and synthetic data generation can help in 

creating such models by reducing the time and resources required to gather their training 

data. This is an exciting precedent for the potential of synthetic data generation in the field of 

AI and Deep Learning applications, particularly in areas where the collection of large, 

diverse, and accurately labeled real-world data is a challenge. Given the efficiency of 

synthetic data, we propose applying them in simulations preceding real-world data capture. 
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In these simulations, many environmental parameters can be adjusted and analyzed, allowing 

the researchers to choose the best ones without significant amounts of time and effort. 

Methods 

Data Acquisition 

The real footage from feedlot cattle used in this project is acquired through The Lethbridge 

Research and Development Centre led by Karen Schwartzkopf-Genswein. The videos are 

captured using a GoPro Hero 10. The camera is set up in front of a walking aisle for cattle 

and cattle are led to pass through that aisle while the camera is recording. It is positioned in a 

constant position during the recording with a varying distance of 1 to 3 meters from the 

cattle. Weather conditions in the recordings vary between sunny, cloudy, or snowy, changing 

the light effects and shadows in between the recordings. The subject cattle appear in colors 

black and brown and with patterns of white spotting. 

Preprocessing 

The camera used to record the footage from the feedlot uses an ultra-wide lens. This kind of 

lens introduces a distortion to the picture, especially around the edges of the image. To make 

this footage represent reality as best as possible, a simple distortion-fix algorithm is applied 

to the footage before using it for the next steps. The code for this algorithm is provided in the 

supplementary information. 

Pipelines for Creating Deep Learning Models 

To illustrate the effects of using a 3D cow model based on our hypothesis, we train three 

different neural networks using different pipelines shown in Figure 1. These pipelines are 

Goldani, Ali
Note to Karen: Please advise on how to appropriately cite the data providers.
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described in the following. The real model is created using real footage acquired from the 

feedlot with manual labeling and no modifications applied to the data. This is the classical 

pipeline for training a DL model (Figure 1a). The synthetic model pipeline is similar to the 

real model pipeline but with synthetic data and generated labels instead of real data and 

manual labeling. The synthetic data contains subjects similar to real data, but with various 

backgrounds from real environments and a combination of changes applied to their 

appearance so that it would have more variety. In comparison, we expect this method not to 

be as efficient as the real model as it will be evaluated on real data only (Figure 1b). The 

combined model is the pipeline for augmenting data to fill the gaps in real footage. Here, the 

real model undergoes a fine-tuning process using the data for training the synthetic model. 

This way, the model that has formed an understanding of what real data is, learns a variety of 

features in the appearance of subjects. We hypothesize that this pipeline will have an 

increased performance in evaluation. (Figure 1c) 

 

Figure 1. Pipelines used to train models. Procedures for training a model with a) real footage b) synthetic data c) real footage and fine-tuning it 
with synthetic data. 
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Creation of Cow Model 

For the base model of the cow, we use a proprietary artist-created model that contains default 

animations for generic behaviors such as walking47. It is a generic cow model that resembles 

the appearance of the typical feedlot cattle. Figure 2 depicts the elements of this cow model. 

Figure 2b shows the basic appearance of this model. It is created based on the anatomical 

features of an average feed cattle. This model can be extended with hair and skin simulation 

and provides the ability to implement physics. By using the real cow in the footage as a 

reference, Figure 2a, we match the size, and shape and use texture modification to change the 

color of the cow’s coating (including spotting) to create patterns close to what we expect to 

see in real life. To be able to change the model’s appearance and move its components in the 

way that a real cow does, we need to have the bone structure for the cow. This process is 

called Rigging. Figure Figure 2d shows the armature included in this model to control the 

model's soft-body component. Using an atlas for cow anatomy, Figure 2c, we have matched 

the bone structure to make sure it is an exact representation of a cow’s anatomy. Finally, hair 

particles and textures make the realistic synthetic cow shown in figure Figure 2e. This version 

is used in the data augmentation process. 
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Figure 2. Process for creating the base 3D model of the cow. a) Reference pictures for creating manual animation. These pictures are frames 
taken from available video footage. b) The base 3D model of the cow that we use for feature-matching with the cows in our footage. c) 
Anatomical Reference of the cow (reference). d) Added armature to the cow based on the anatomical reference. This armature plays the role of 
the skeleton of the animal and is used in the animation process. e) Textured version of the cow with all the added details to reflect the visual 
appearance of a real cow. 

Scene Matching and Animation 

The model is now imported into a scene in Blender. We take a series of background images 

belonging to real recording environments, then all environment details such as lighting (angle 

and the intensity of the light), environment elements (background objects and flooring), and 

camera specifications (distance from subject, field of view, and focal length) are adjusted in 

the scene to match that background. For example, the color and angle of the environment 

lighting are modified in a way to illuminate the subjects the same as the background and cast 

shadows with length, angle, and intensity similar to the background. Following this method, 

we create a synthetic version of the real video that matches the real footage. 

The acquired 3D model comes with a set of pre-made animations that display cycles of 

movements of a cow (walking, trotting, eating, etc.). By adding changes to the position and 
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the path of the animation, we create varied movements that help us build the augmented 

dataset. 

Synthetic Data Augmentation 

To create more data that can be used for Deep Learning model training, we make changes to 

the synthetic animation we created in the previous step. These changes are applied to: 

• Cattle appearance: In Blender, the color and texture of objects can be controlled 

through a tool-set called geometry nodes. Using geometry nodes, we can shift the 

color of the cow naturally by adding shades of color and merging them in natural-

looking patterns. Also, using these nodes, we can generate a randomized spotting 

pattern on the cow to create an even more realistic coating. 

• Lighting: Lighting details can be changed in the blender scene to change the time of 

day for the synthetic footage, having different lighting conditions in the videos can 

provide more variety in the training dataset for Deep Learning models. 

• Viewing angle: As the synthetic model is a three-dimensional model, we can change 

the viewing angle to create synthetic data that would be equivalent to recording the 

real video by putting the camera in a different position. 

• Environment: Using Blender, we can create elements that exist in the background in 

the 3D space so that they cast their shadows and display the shadow of the cow that is 

cast on them. This way, we can even recreate complex scenarios in which the shadow 

cast by the cow can be mistaken for its limbs due to recording conditions. 
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Figure 3. Steps in Adding Variations to the augmented cow. a) The basic model comprised of only the soft body is given a new natural skin 
color. b) The cow model in a) in a different augmented environment. c) The cow model in a) with a randomly generated coating. d) Display of 
different angles available for data augmentation. 

By using combinations of the above-mentioned changes, we can create several videos only 

based on a single scene setting which can significantly help with the lack of data in training 

Deep Learning networks. 

Realistic Rendering 

After defining the scenes that would match the backgrounds of real recordings and setting up 

the surrounding objects to interact with the environment, we can modify elements in them to 

introduce randomized variations to our augmented dataset. To do this we use a set of 

parameters that can be interpreted in Blender as scene settings. After all the parameters have 

been set, the Python script that we have developed, goes through them, making changes and 

preparing for render. We use the high-fidelity rendering capabilities of Blender to generate 

life-like images that resemble a real cow in the created condition. We use Cycles Render 

Engine in Blender to render the footage. The generation of each frame takes between 1 to 3 

minutes (frames that require a repeat of physical simulation take longer) using our hardware 

at the time of writing this paper (AMD Ryzen5 5600x CPU, Nvidia RTX 4080 16GB GPU). 
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Figure 4. Steps in Constructing Synthetic Data. a) Process of animating the soft body based on the real-world footage, rigging 
view at the top and animation graph at the bottom panel. b) Using the real-world footage background with the augmented data. c) 
Result of realistic rendering process of cow models that include realistic coating, fur, and other features. 

Automatic Labeling and Data Export 

In this work, we are using a 20-keypoint model (cow-20kp) inspired by the keypoint schemas 

used in Ap-10k48 and AnimalPose49 datasets with more focus on the back arc of the cow 

(Figure 5). For the labels of our datasets, we have chosen MSCOCO format introduced by 

Microsoft Research50 because of its popularity among the scientific works focusing on object 

detection, segmentation, and keypoint detection (our use case). This annotation format 

includes information about keypoints such as position, visibility and place in object structure. 
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Figure 5. Display of 20 keypoints used in this study to describe the pose of a cattle. 1-4: Back arc points, 5: Head, 6: Nose or Snout, 7: 
Neck, 8: Left Shoulder, 9: Left Elbow, 10: Left Front Paw, 11: Right Shoulder, 12: Right Elbow, 13: Right Front Paw, 14: Belly, 15: Left 
Hip, 16: Left Knee, 17: Left Hind Paw, 18: Right Hip, 19: Right Knee, 20: Right Hind Paw. In the synthetic cow model, there is a marker 
object associated with each of these keypoints which is used for the automatic extraction of labels for each frame. 

In training the real model, data annotation is performed using CVAT51 which is a time-

consuming task. On the contrary, the labels and required information from the synthetic 

models are readily available due to the possibility of tracking objects in Blender. However, 

since all the labels are present in our model, we need to reduce them to the ones only visible 

from the point of view of the camera. To do so, we use a simple technique called Ray Casting 

in Computer Graphics. In this method, we check if a direct line of sight exists between the 

camera in the environment and the marker that we want to track. As a result, points that are 

occluded or out of view can be detected and properly handled. 

In ray casting, given two points 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1), 3D position of the camera in the 

environment, and P2 = (x2, y2, z2), 3D position of the marker on the cow’s body, the 

equation of the ray 𝑅𝑅(𝑡𝑡) that starts at 𝑃𝑃1 and passes through 𝑃𝑃2 is given by: 

𝑅𝑅(𝑡𝑡) = 𝑃𝑃1 + 𝑡𝑡(𝑃𝑃2 − 𝑃𝑃1) (1) 
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Where: 

• 𝑅𝑅(𝑡𝑡) is a point on the ray. 

• 𝑡𝑡 is a parameter. When 𝑡𝑡 =,𝑅𝑅(𝑡𝑡) = 𝑃𝑃1, and when 𝑡𝑡 =,𝑅𝑅(𝑡𝑡) = 𝑃𝑃2. For values of 𝑡𝑡 

between 0 and 1, 𝑅𝑅(𝑡𝑡) will be a point on the line segment between 𝑃𝑃1 and 𝑃𝑃2. For 𝑡𝑡 <

0 or 𝑡𝑡 > 1, 𝑅𝑅(𝑡𝑡) will be on the ray but outside the line segment. 

• 𝑃𝑃1 and 𝑃𝑃2 are vectors representing the coordinates of the points. 

We check for values of t between 0 and 1 to see if there is a point that fits in the equation. If 

the calculated value for 𝑡𝑡 is anything other than 0 or 1, it means that there are points breaking 

the line of sight from the camera to the point. Thus, we omit the marker at point P2 from the 

exported list of labels. After the rendering process is completed, we use custom scripts (see 

supplementary information) to export information such as joint positions in 2D. 

Experiment Design 

The main goal of this study is to show that with the current capabilities of 3D graphics tools, 

we can minimize the need for in-field data gathering. To show this, we use limited footage of 

real data, lacking variety in subject skin color, lighting condition, and environment to train a 

model for the task of pose estimation on cattle. Then we test this model's performance on a 

subset of data that is very different from its own. Then using our synthetic data generation 

method described in this work, we create a subset of data that will have a higher range of 

variety and use it to train a synthetic model. By testing these models and a third model 

resulting from their combination, we can determine the effectiveness of synthetic data.  
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Model Training 

We chose to use the MMpose framework52 as an approved standard in neuroscience 

communities due to its ease of use and the number of current pre-trained models in its model 

zoo. 

Following a good practice in solving Artificial Intelligence problems, we do not perform the 

training from the ground up when possible. We use a pre-trained model on the Ap-10k 

dataset using the HRNet backbone and fine-tune it on our data with the cow-20kp keypoints 

schema. Approaching industry-grade performance in a short time is more possible this way. 

Now, for training real and synthetic models, we continue the training process from the last 

checkpoint--a saved state during the previous training--of the pre-trained network, so that the 

model learns to map its representation of cow pose, which it has acquired over the process of 

training on Ap-10k dataset, onto a 20-output head (one output for each keypoint). As for the 

combined model, we want to see if the gaps that exist in real data can be filled with synthetic 

data. To do so, we take the model trained on real data and fine-tune it by resuming its training 

on synthetic data. Table Table 2 describes the data used for training each model. 

Evaluation 

To ascertain the robustness and generalization capabilities of the trained models, it is pivotal 

to test their performance on data they have never encountered before. This not only provides 

a benchmark for their reliability but also offers insights into how effectively the augmented 

data mimics real-life scenarios, especially when compared with models trained exclusively 

on real data. 
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For the evaluation phase, a set of unique frames from cattle walking has been chosen that 

differs from the training dataset of each model and holds the variety that can be observed in a 

feedlot. This ensures that a good performance result can mean a good performance in real-

world scenarios. This dataset is then labeled and verified to create the ground truth for 

calculating evaluation metrics. 

In the evaluation process, the test dataset is given to all models, and the pose that they have 

predicted for each frame is compared to the ground truth labels to generate the evaluation 

metrics. The evaluation metrics are described below. 

Precision and Recall 

Precision and recall are two of the most commonly used metrics for evaluating performance 

in detection tasks. Precision is defined as the proportion of correct detections out of all the 

detections that the model has made. A high precision value indicates that the model makes 

accurate predictions with few mistakes. Recall, on the other hand, measures the proportion of 

correct detections out of all the ground truth instances. A model with high recall successfully 

detects most of the relevant instances, resulting in fewer missed detections. Relying on 

Precision alone can lead to favoring a model that only makes a few correct detections and 

misses the rest. Paying attention solely to Recall can also result in choosing a model that 

makes many incorrect detections as well as correct detections. Hence, it is crucial to consider 

both of these values at the same time; a model with high precision and recall metrics is ideal.  

Following MS COCO guidelines for keypoint estimation tasks, we use MS COCO Average 

Precision (AP) and Recall (AR) as the metrics to report the performance of our models. In 



21 
 

this method of calculating AP and AR, object keypoint similarity (OKS) is defined to 

determine the validity of a keypoint prediction. 

𝑂𝑂𝑂𝑂𝑂𝑂 =
∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 � −𝑑𝑑𝑖𝑖

2

2𝑠𝑠2𝑘𝑘𝑖𝑖2
� δ(𝑣𝑣𝑖𝑖 > 0)

∑ δ(𝑣𝑣𝑖𝑖 > 0)𝑖𝑖
,  0 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 1, 𝑣𝑣𝑖𝑖 ∈ {0,1,2} (2) 

Where: 

• 𝑑𝑑𝑖𝑖 is the Euclidean distance between prediction and ground truth value of keypoint 𝑖𝑖. 

• 𝑠𝑠 denotes object's scale, it is considered as the square root of the object's area. 

• 𝑘𝑘𝑖𝑖 is a constant specific to keypoint 𝑖𝑖 that controls falloff, which determines how 

sensitive 𝑂𝑂𝑂𝑂𝑂𝑂 is to 𝑑𝑑𝑖𝑖. Larger 𝑘𝑘𝑖𝑖 increases the tolerance of 𝑂𝑂𝑂𝑂𝑂𝑂, meaning that the 

prediction can have more distance from the ground truth before causing a drop in 

𝑂𝑂𝑂𝑂𝑂𝑂. 

• 𝑣𝑣𝑖𝑖 specifies if keypoint 𝑖𝑖 is visible. 𝑣𝑣𝑖𝑖 = 0 means that keypoint 𝑖𝑖 is not in the image. 

𝑣𝑣𝑖𝑖 = 1 means that keypoint 𝑖𝑖 is in the image, but it is somehow occluded. 𝑣𝑣𝑖𝑖 = 2 

shows that the keypoint is completely visible. Only keypoints with 𝑣𝑣𝑖𝑖 > 0 impact 

𝑂𝑂𝑂𝑂𝑂𝑂. 

Given the 𝑂𝑂𝑂𝑂𝑂𝑂, COCO AP and COCO AR can be calculated using equations (3) and (4). 

COCO AP and COCO AR are calculated across a range of OKS thresholds, from 0.5 to 0.95 

in steps of 0.05. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝐴𝐴𝐴𝐴 =
1

|OKS Thresholds| � 𝐴𝐴𝑃𝑃𝑡𝑡
𝑡𝑡∈OKS Thresholds

(3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝐴𝐴𝐴𝐴 =
1

|OKS Thresholds| � 𝐴𝐴𝑅𝑅𝑡𝑡
𝑡𝑡∈OKS Thresholds

(4) 
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Average Pixel Distance and Average Relative Error Percentage 

To illustrate the performance of these models in a more intuitive way, we use two metrics to 

show the pixel difference between prediction and ground truth. Pixel distance shows exactly 

how far the prediction is from ground truth on a given image. Since our test data is consistent 

in pixel dimensions, this metric can be used as a measure for comparison. For calculating the 

error percentage, we need to specify a base for normalizing all the distances. It is a common 

practice to use the head length of the animal (distance between Head and Nose keypoints in 

this case). Equations (5) and (6) result in these metrics. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑑𝑑𝑖𝑖δ(𝑣𝑣𝑖𝑖 > 0)𝑖𝑖

∑ δ(𝑣𝑣𝑖𝑖 > 0)𝑖𝑖
(5) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑑𝑑𝑖𝑖
𝑑𝑑𝐻𝐻𝑖𝑖
𝑖𝑖

∑ δ(𝑣𝑣𝑖𝑖 > 0)𝑖𝑖
(6) 

Where: 

• 𝑑𝑑𝐻𝐻𝑖𝑖 is the length of the head in the image. 

• Other parameters are the same as in equation (2). 

Data availability 

TODO 

Code availability 

All of the developed code, tools, and software components are available at: 

https://github.com/Mohajerani-Lab/mmpose-synthetic-tune   

https://github.com/Mohajerani-Lab/mmpose-synthetic-tune
Ali Goldani
Note to Karen:
Please let us know if we can publish the data used in this research. You can review the data through this private link:

ttps://uleth-my.sharepoint.com/:f:/g/personal/a_goldani_uleth_ca/EnBxVLMkk3RLixyBROwDJ7EByCi74fEoNkjvcY1EQ8iLpA?e=egb26N



23 
 

References 

1. Terrell, S. P., Reinhardt, C. D., Larson, C. K., Vahl, C. I. & Thomson, D. U. Incidence of 

Lameness and Association of Cause and Severity of Lameness on the Outcome for Cattle on 

Six Commercial Beef Feedlots. Journal of the American Veterinary Medical Association 250, 

437–445 (2017). 

2. Davis-Unger, J. et al. Economic Impacts of Lameness in Feedlot Cattle1. Translational 

Animal Science 1, 467–479 (2017). 

3. Fitzsimmonds, H. M. Survey Assessing Foot Trimmer Involvement in Managing Lameness in 

UK Beef Cattle. Veterinary Record 195, (2024). 

4. Terrell, S. P. et al. Perception of Lameness Management, Education, and Animal Welfare 

Implications in the Feedlot From Consulting Nutritionists, Veterinarians, and Feedlot 

Managers. 2013 (2013) doi:10.21423/aabppro20134224. 

5. Lhermie, G. et al. Economic Effects of Policy Options Restricting Antimicrobial Use for High 

Risk Cattle Placed in U.S. Feedlots. Plos One 15, e0239135 (2020). 

6. Erickson, S. E., Booker, C. W., Jelinski, M. & Janzen, E. D. The Epidemiology of Hoof-

Related Lameness in Western Canadian Feedlot Cattle. American Association of Bovine 

Practitioners Conference Proceedings 11–14 (2023) doi:10.21423/aabppro20228587. 

7. Cortés, J. A., Hendrick, S., Janzen, E. D., Pajor, E. A. & Orsel, K. Economic Impact of Digital 

Dermatitis, Foot Rot, and Bovine Respiratory Disease in Feedlot Cattle. Translational Animal 

Science 5, (2021). 

8. Wong, N. S. T. Characterization of the Hoof Bacterial Communities in Feedlot Cattle Affected 

With Digital Dermatitis, Foot Rot or Both Using a Surface Swab Technique. Animal 

Microbiome 6, (2024). 



24 
 

9. Burgstaller, J., Wittek, T., Sudhaus-Jörn, N. & Conrady, B. Associations between Animal 

Welfare Indicators and Animal-Related Factors of Slaughter Cattle in Austria. Animals 12, 659 

(2022). 

10. Tunstall, J., Mueller, K., Grove White, D., Oultram, J. W. H. & Higgins, H. M. Lameness 

in Beef Cattle: UK Farmers’ Perceptions, Knowledge, Barriers, and Approaches to Treatment 

and Control. Front. Vet. Sci. 6, 94 (2019). 

11. Hogeveen, H., Kamphuis, C., Steeneveld, W. & Mollenhorst, H. Sensors and clinical 

mastitis--the quest for the perfect alert. Sensors (Basel) 10, 7991–8009 (2010). 

12. Rajkondawar, P. G. et al. The development of an objective lameness scoring system for 

dairy herds: pilot study. Transactions of the ASAE 45, 1123 (2002). 

13. Rajkondawar, P. G. et al. A system for identifying lameness in dairy cattle. Applied 

engineering in agriculture 18, 87 (2002). 

14. Rajkondawar, P. G. et al. Comparison of models to identify lame cows based on gait and 

lesion scores, and limb movement variables. J Dairy Sci 89, 4267–75 (2006). 

15. Neveux, S., Weary, D. M., Rushen, J., Von Keyserlingk, M. A. G. & De Passillé, A. M. 

Hoof discomfort changes how dairy cattle distribute their body weight. Journal of Dairy 

Science 89, 2503–2509 (2006). 

16. Pastell, M. et al. Assessing cows’ welfare: Weighing the cow in a milking robot. 

Biosystems engineering 93, 81–87 (2006). 

17. Maertens, W. et al. Development of a real time cow gait tracking and analysing tool to 

assess lameness using a pressure sensitive walkway: The GAITWISE system. Biosystems 

engineering 110, 29–39 (2011). 



25 
 

18. Chapinal, N. et al. Measurement of acceleration while walking as an automated method 

for gait assessment in dairy cattle. J Dairy Sci 94, 2895–901 (2011). 

19. Pastell, M., Tiusanen, J., Hakojärvi, M. & Hänninen, L. A wireless accelerometer system 

with wavelet analysis for assessing lameness in cattle. Biosystems engineering 104, 545–551 

(2009). 

20. Coşkun, G., Şahin, Ö., Delialioğlu, R. A., Altay, Y. & Aytekin, İ. Diagnosis of lameness 

via data mining algorithm by using thermal camera and image processing method in Brown 

Swiss cows. Trop Anim Health Prod 55, 50 (2023). 

21. Nejati, A., Bradtmueller, A., Shepley, E. & Vasseur, E. Technology applications in bovine 

gait analysis: A scoping review. PLoS One 18, e0266287 (2023). 

22. Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep Learning for 

Computer Vision: A Brief Review. Computational Intelligence and Neuroscience 2018, 1–13 

(2018). 

23. Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object Detection With Deep Learning: A 

Review. IEEE Trans. Neural Netw. Learning Syst. 30, 3212–3232 (2019). 

24. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V. & Garcia-

Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. 

Preprint at http://arxiv.org/abs/1704.06857 (2017). 

25. Barney, S., Dlay, S., Crowe, A., Kyriazakis, I. & Leach, M. Deep learning pose 

estimation for multi-cattle lameness detection. Sci Rep 13, 4499 (2023). 

26. Li, Z. et al. Fusion of RGB, optical flow and skeleton features for the detection of 

lameness in dairy cows. Biosystems Engineering 218, 62–77 (2022). 



26 
 

27. Wei, Y. et al. Study of Pose Estimation Based on Spatio-Temporal Characteristics of Cow 

Skeleton. Agriculture 13, 1535 (2023). 

28. Liu, H., Reibman, A. R. & Boerman, J. P. Feature extraction using multi-view video 

analytics for dairy cattle body weight estimation. Smart Agricultural Technology 6, 100359 

(2023). 

29. Emam, Z. et al. On The State of Data In Computer Vision: Human Annotations Remain 

Indispensable for Developing Deep Learning Models. Preprint at 

http://arxiv.org/abs/2108.00114 (2021). 

30. Kahnau, P. et al. A systematic review of the development and application of home cage 

monitoring in laboratory mice and rats. BMC Biol 21, 256 (2023). 

31. Yang, S. et al. Image Data Augmentation for Deep Learning: A Survey. Preprint at 

http://arxiv.org/abs/2204.08610 (2023). 

32. Zhuang, F. et al. A Comprehensive Survey on Transfer Learning. Proc. IEEE 109, 43–76 

(2021). 

33. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 

(2020). 

34. Zhang, C. et al. A survey on federated learning. Knowledge-Based Systems 216, 106775 

(2021). 

35. Bolaños, L. A. et al. A three-dimensional virtual mouse generates synthetic training data 

for behavioral analysis. Nat Methods 18, 378–381 (2021). 

36. Plum, F., Bulla, R., Beck, H. K., Imirzian, N. & Labonte, D. replicAnt: a pipeline for 

generating annotated images of animals in complex environments using Unreal Engine. Nat 

Commun 14, 7195 (2023). 



27 
 

37. Parnami, A. & Lee, M. Learning from Few Examples: A Summary of Approaches to 

Few-Shot Learning. Preprint at http://arxiv.org/abs/2203.04291 (2022). 

38. Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior 

in neuroscience. Current Opinion in Neurobiology 60, 1–11 (2020). 

39. Gong, C. et al. Multicow pose estimation based on keypoint extraction. PLoS ONE 17, 

e0269259 (2022). 

40. Li, Z., Song, L., Duan, Y., Wang, Y. & Song, H. Basic motion behaviour recognition of 

dairy cows based on skeleton and hybrid convolution algorithms. Computers and Electronics 

in Agriculture 196, 106889 (2022). 

41. Khin, M. P., Zin, T. T., Mar, C. C., Tin, P. & Horii, Y. Cattle Pose Classification System 

Using DeepLabCut and SVM Model. in 2022 IEEE 11th Global Conference on Consumer 

Electronics (GCCE) 494–495 (IEEE, Osaka, Japan, 2022). 

doi:10.1109/GCCE56475.2022.10014248. 

42. Yang, Y., Komatsu, M., Oyama, K. & Ohkawa, T. SCIRNet: Skeleton-based cattle 

interaction recognition network with inter-body graph and semantic priority. in 2023 

International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, Gold Coast, 

Australia, 2023). doi:10.1109/IJCNN54540.2023.10191592. 

43. Islam, M. N., Yoder, J., Nasiri, A., Burns, R. T. & Gan, H. Analysis of the Drinking 

Behavior of Beef Cattle Using Computer Vision. Animals 13, 2984 (2023). 

44. Aoki, M. & Sugiura, R. Image-based Estimation of Pelvic Skeletal Key Points of Dairy 

Cattle by Using Deep Learning. Agricultural Information Research 33, 59–64 (2024). 

45. Jiang, B. et al. FLYOLOv3 deep learning for key parts of dairy cow body detection. 

Computers and Electronics in Agriculture 166, 104982 (2019). 



28 
 

46. Gardenier, J., Underwood, J. & Clark, C. Object Detection for Cattle Gait Tracking. in 

2018 IEEE International Conference on Robotics and Automation (ICRA) 2206–2213 (IEEE, 

Brisbane, QLD, 2018). doi:10.1109/ICRA.2018.8460523. 

47. Black Cattle Animated 3D - TurboSquid 1907491. https://www.turbosquid.com/3d-

models/black-cattle-animated-3d-1907491. 

48. Yu, H. et al. AP-10K: A Benchmark for Animal Pose Estimation in the Wild. 

49. Cao, J. et al. Cross-Domain Adaptation for Animal Pose Estimation. in 2019 IEEE/CVF 

International Conference on Computer Vision (ICCV) 9497–9506 (IEEE, Seoul, Korea 

(South), 2019). doi:10.1109/ICCV.2019.00959. 

50. Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. in Computer Vision – 

ECCV 2014 (eds. Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) vol. 8693 740–755 

(Springer International Publishing, Cham, 2014). 

51. CVAT.ai Corporation. Computer Vision Annotation Tool (CVAT). (2024) 

doi:10.5281/zenodo.12771595. 

52. MMPose Contributors. OpenMMLab Pose Estimation Toolbox and Benchmark. (2020). 

 

Acknowledgments 

Author contributions 

A.G. and M.M. designed the study. A.G. implemented the protocol and pipelines. A.G. and 

N.G. designed the evaluation scenario and wrote the paper. I.W. supervised the writing and 

provided feedback.  



29 
 

Competing Interests 

The authors declare that no competing interests exist. 

Additional information 

Supplementary materials can be found on the GitHub page of this project. 

  



30 
 

Table 1. Evaluation metrics showing the average performance of each model across a 5-fold cross validation with different values for intersection 
over union. 

Metric Real Model Synthetic Model Combined Model 

COCO/AP @ IoU=0.50:0.95 0.86 0.87 0.87 

COCO/AP @ IoU=0.75 0.90 0.90 0.88 

COCO/AR @ IoU=0.50:0.95 0.89 0.89 0.91 

COCO/AR @ IoU=0.75 0.93 0.93 0.93 
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Table 2. Description of datasets used for training each model 

Model Training Details 

Real Model 99 Real Frames for Training and Validation 

Synthetic Model 117 Generated Frames for Training and Validation 

Combined Model 
Real Model Fine-tuned on Synthetic Model’s Data, 

Real Model’s Validation 
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Figure 6. Plots comparing the performance of models. In pixel analysis, a 10-pixel length is equal to 2 cm on average. 
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Figure 7. An example of a simulation process in Blender to specify the best location for placing a camera in real life scenario. Generated 
frames from each camera can be used to train deep learning models for the desired task. the model with the highest efficiency shows the best 
place to deploy the camera. 
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